
Minimum fracture pressure

Hydrostatic pressure of the fluids (mud and
spacer) ahead of the foamed cement

Allowable average density of the foamed cement 

The allowable average density of the foamed cement in
the annulus, ρ1, is calculated as below.

(C-11)



Number of stages

Divide into intervals of 1,000 to 1,500 ft
Total interval is 8,000 – 2,500 ft = 5,500 ft
Divide into 5 stages of 1,100 ft each

Hydrostatic pressure at the midpoint of each
stage

ph = ph above stage + ph to midpoint of stage

Stage No. 1 (top)

Stage No. 2

Stage No. 3

Stage No. 4

Stage No. 5 (bottom)

Nitrogen requirement for each stage based on
the midpoint

Nitrogen density, ρN2:

(C-12)

where

KN2 = nitrogen volume factor (scf/bbl).
Foamed cement quality, Qfoam:

(C-13)

where 
ρbs = base slurry density
ρfc = foamed cement density
ρN2 = nitrogen density.

Foamed cement yield, Yfc (ft3/sk):

(C-14)

where

Ybs = base slurry yield (ft3/sk).

Annular volume, Vann:

(C-15)

where

L = length

Sann = annular capacity.

Cement requirement, C (sk):

(C-16)

Nitrogen requirement at conditions in the annulus,
RN2:

(C-17)

The nitrogen requirement refers to the volume
required at circulating temperature and pressure. For
job-design purposes, this value must be converted to the
equivalent volume of nitrogen in standard cubic feet (at
standard temperature and pressure [STP]).

Nitrogen volume,VN2, at STP (scf):

(C-18)

Stage No. 1, ph1 = 1,413 psi

The nitrogen volume factor can be calculated based
upon pressure and bottomhole circulating temperature
or more easily looked up in standard tables published by
most cementing companies.

Foamed cement quality, Qfoam:
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Foamed cement yield, Yfc:

Annular volume, Vann:

Cement requirement, C (sk):

Nitrogen requirement, RN2:

Nitrogen volume, VN2, at STP:

Similarly, the requirements for the other stages are
calculated, and the following table can be built.

Hydrostatic pressure as each stage of foamed
cement enters the annulus 

Actually, hydrostatic pressure should be calculated for
the position of each stage immediately above the weak
formation(s). Because a job designed for constant den-
sity uses a slurry with the lowest concentration of nitro-
gen in the first stages, these initial stages will be signifi-
cantly more dense when they pass the weaker
formations below. Therefore, to ensure the integrity of
the well, the hydrostatic pressure exerted on the weak
formations must be calculated and compared to the
fracturing pressure of these formations. To do this, the
following steps must be followed.

1. Determine the volume occupied by each stage at the
weak zone.

2. Calculate its length based on the annular capacity.

3. Calculate the hydrostatic pressure of the fluids in the
annulus above.

4. Calculate the hydrostatic pressure of the foamed
cement stage(s).

5. Add the results of Steps 3 and 4 to obtain the total
hydrostatic pressure.

6. Compare this value to the fracturing pressure of the
weak formation.

7. If the results indicate a risk of formation fracturing,
consider a constant-nitrogen-rate or a hybrid job. A
hybrid job involves several stages of foamed cement
with different designed densities.

From the preceding example, this calculation is per-
formed as shown below.

1. Determine the volume occupied by each stage at the
weak zone.

■ For Stage No. 1, 145.6 sk or (145.6 × 1.29 ft3/sk 
× 0.178 bbl/ft3) = 33.4 bbl of cement slurry are
required.

■ The nitrogen requirement is 12,192 scf.

■ The weak zone is at 7,700 ft.

■ The fluids ahead of the cement are 9.2-lbm/gal mud
(0.4784 psi/ft), and 745 ft of spacer at 8.6 lbm/gal
(0.4472 psi/ft).

■ Assuming the foamed cement occupies 850 ft
(because of compression), the length of the mud
column is 7,700 – 850 (cement) – 745 (spacer) =
6,105 ft.

■ The hydrostatic pressure from the mud is 6,105 ft 
× 0.4784 psi/ft = 2,920 psi, and the hydrostatic
pressure from the spacer is 745 ft × 0.4472 psi/ft 
= 333 psi; thus, the total hydrostatic pressure is
2,920 + 333 = 3,253 psi.

V
ann
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3

3

Stage 1 2 3 4 5

Hydrostatic pressure 1,413 1,894 2,374 2,855 3,335
(psi)

Nitrogen density 0.821 1.069 1.291 1.493 1.677
(lbm/gal)

Foamed cement 0.4335 0.4417 0.4493 0.4564 0.4631
quality

Foamed cement yield 2.28 2.31 2.34 2.37 2.40
(ft3/sk)

Annular volume (ft3) 331.9 331.9 331.9 331.9 331.9

Cement requirement 145.6 143.7 141.8 140.0 138.3
(sk)

Nitrogen per sack 83.7 112.6 140.2 166.8 192.5
(scf/sk)

Nitrogen requirement 12,192 16,179 19,878 23,353 26,620
(scf)

Total cement requirement: 943.3 sk (709.4 sk for foamed stages + 
233.9 sk for tail)

Total nitrogen requirement: 98,222 scf



■ Reading from the nitrogen tables, the volume occu-
pied by 12,192 scf of nitrogen is 12.7 bbl at 160°F.
Thus, the volume of the foamed cement slurry is
12.7 + 33.4 = 46.1 bbl.

2. Calculate its length based on the annular capacity.

With an annular capacity of 0.3017 ft3/ft and 46.1 bbl
of slurry, the fill-up is

If this result had not been close to the assumed
foamed cement length of 850 ft (Step No. 1), the cal-
culation would be repeated using an adjusted length.

3. Calculate the hydrostatic pressure of the fluids in
the annulus above.

The height of the mud column is 7,700 – 745 – 858 
= 6,097 ft. Therefore, the hydrostatic pressure is
6,097 ft × 0.4784 psi/ft = 2,916.8 psi. For the spacer,
the hydrostatic pressure is 745 ft × 0.4472 psi/ft =
333.1 psi.

4. Calculate the hydrostatic pressure of the foamed
cement stage(s).

The foam quality can be calculated by

The previous equation for foamed cement quality
can be rearranged to calculate foamed cement den-
sity,

Therefore, the hydrostatic pressure from foamed
cement is 10.74 lbm/gal × 0.052 psi/ft/lbm/gal × 858 ft
= 479.2 psi.

5. Add the three hydrostatic pressures to obtain the
total hydrostatic pressure.

2,916.8 psi + 333.1 psi + 479.2 psi = 3,729.1 psi.

6. Compare this value to the fracturing pressure of the
weak formation.

The fracturing pressure of the weak formation is
3,942 psi.

Note that the pressure calculated in the previous
step does not exceed the fracturing pressure of the
weak formation but does exceed the safety margin set
in the first step. This is what would be expected based
on the method for calculating the foamed cement
density, based on the fracturing pressure less the
safety margin. This calculation should be repeated as
each stage passes the weak formation.

Job execution tables

It is helpful for control of the job to construct tables of
the pumping schedule containing the following informa-
tion.

■ Base slurry volume

■ Nitrogen ratio

■ Nitrogen volume

■ Nitrogen pump rate 

■ Foamer pump rate

Q
V

V Vfoam

N

bs N

=
+

=2

2

12.7 bbl

12.7 bbl + 33.4 bbll
= 0.2755

ρ ρ ρ ρ
fc foam bs N N

Q= − − +

=

( )( )1
2 2

(1 – 0.2755)(14.22 – 1.638) + 1.638 = 10.74 lbm/gal.

Job Schedule per Stage

Stage 1 2 3 4 5

Base slurry volume (bbl) 33.4 33.0 32.6 32.1 31.8

Nitrogen ratio 365 490 610 728 837
(scf/bbl base slurry)

Nitrogen volume (scf) 12,192 16,179 19,878 23,353 26,620

Nitrogen and Foamer Rate

Base Slurry Rate 3 4 5 6 7

(bbl/min)

Nitrogen rate (scf/min)

Stage No. 1 1,095 1,460 1,825 2,190 2,555

Stage No. 2 1,470 1,960 2,450 2,940 3,430

Stage No. 3 1,830 2,440 3,050 3,660 4,270

Stage No. 4 2,184 2,912 3,640 4,368 5,096

Stage No. 5 2,511 3,348 4,185 5,022 5,859

Foamer rate (gal/min)

All stages 1.31 1.74 2.18 2.61 3.05

46 1

0 3017 0 178

.

. .

bbl

ft /ft bbl/ft
858 ft.

3 3×
=

ρ
N2

= × ×1.724 10 nitrogen volume factor (sc–3 ff/bbl)

= 1.724 10 950 scf/bbl

= 1.638 lb

–3× ×

mm/gal.



C-7 Acronym list
API American Petroleum Institute

BWOB By weight of blend

BWOC By weight of cement

BWOW By weight of water

ISO International Organization for Standardization

SI Système International

STP Standard temperature and pressure

TVD True vertical depth

Conversion Factors

Customary Unit Multiply by To Obtain SI 
Units

in. 2.54 (25.4) cm (mm)

ft 0.305 m

ft3 0.0283 m3

bbl 0.159 m3

U.S. gal 3.785 (3.785 × 10–3) L (m3)

ft3/ft (capacity) 0.0929 m3/m

bbl/ft (capacity) 0.522 m3/m

gal/sk (94 lbm sack) 88.78 L/t

ft3/sk (94 lbm sack) 0.301 m3/t

lbm 0.454 kg

lbm/gal 120 kg/m3

lbm/ft (pipe weight) 1.49 kg/m

psi 6.895 (6.895 × 10–3) kPa (MPa)

psi/ft 22.7 kPa/m

°F (°F – 32)/1.8 °C
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