Home » Bits » IADC Code For PDC Bits & Classification Chart

IADC Code For PDC Bits & Classification Chart

The IADC PDC Drilling Bits Classification Code system, developed by the International Association of Drilling Contractors, has been the representative voice of drillers worldwide since 1940. This system has enabled drillers to exchange information using standard nomenclature and dull grading methods for PDC drill bits and tricones. This system is not as widely used for PDC drill bits as for tricones, as the IADC system for tricones is used worldwide. However, it’s helpful to know the specifications for PDC drill bits.

Polycrystalline diamond materials, used in polycrystalline diamond compact (PDC Drill Bits) bits, are among the most important material advances for oil drilling tools in recent years. Fixed-head bits rotate as one piece and contain no separately moving parts. When fixed-head bits use PDC cutters, they are commonly called PDC bits. Since their first production in 1976, the popularity of bits using PDC cutters has grown steadily, and they are nearly as common as roller cone bits in many drilling applications.

IADC Code For PDC Drilling Bits Classification System

IADC PDC Drill Bits Classification System Codes consist of 4 characters:

The First Character Of IADC PDC Drilling Bits Code

The first letter of the IADC Classification Code For PDC bits describes the PDC body material, and it is either: 

1) M, which is for matrix body 

“Matrix” is a hard, rather brittle composite comprising tungsten carbide grains metallurgically bonded with a softer, tougher, metallic binder. Matrix is desirable as a bit material because its hardness is resistant to abrasion and erosion. It can withstand relatively high compressive loads but, compared with steel, has low resistance to impact loading.

2) S for steel body construction.

Steel is metallurgically opposite of matrix. It can withstand high-impact loads but is relatively soft and, without protective features, would quickly fail by abrasion and erosion. Quality steels are essentially homogeneous, with structural limits that rarely surprise users.

The Second Character Of IADC PDC Drilling Bits Code

Diamond is the hardest material known. This hardness gives it superior properties for cutting any other material. PDC is extremely important to drilling because it aggregates tiny, inexpensive, man-made diamonds into relatively large, intergrown masses of randomly oriented crystals that can be formed into useful shapes called diamond tables. The second letter of the IADC Classification Code For PDC Bit describes the cutter density as it is known, as more you increase the number of PDC cutters, as more The PDC bit can drill harder formations.

This IADC Code character ranges from 1 to 4 for PDC bits and 6 to 8 for Diamond bits, as shown below. 

  • For PDC bits: ranges from 1 for soft formations to 4 for hard formation
    • 1 refers to 30 or fewer 1/2” cutters
    • 2 refers to 30 to 40 cutters
    • 3 indicates 40 to 50 cutters
    • 4 refers to 50 or more cutters.
  • For diamond bits: ranges from 6 for soft formations to 8 for hard formation
    • 6 refers to diamond sizes larger than three stones per carat 
    • 7 refers to  3 stones to 7 stones per carat
    • 8 refers to sizes smaller than seven stones per carat. 
  • Numerals 0, 5, and 9 are reserved for future use. 

The Third Character Of IADC PDC Bit Classification

Generally, large PDC cutters sizes  (19mm to 25mm) are more aggressive than small cutters. However, they may increase torque fluctuations. Smaller PDC cutters (8mm, 10mm, 13mm, and 16mm) have been shown to drill at higher ROP than large cutters in specific applications. One such application is limestone, for example. (refer to PDC Drilling Bit Design Article for more information)

Small cutters also produce smaller cuttings, while large cutters produce larger ones. Large cuttings may cause problems with hole cleaning if the drilling fluid cannot carry the cuttings up.

The third letter of the IADC Classification Code For PDC Bit describes the size of the cutter.

  • For PDC bits
    • 1 indicates cutter larger than 24 mm in diameter clay, marl, gumbo, and unconsolidated sands.
    • 2 represent 14-24 mm,
    • 3 indicates 13.3 mm (1/2”), and
    • 4 is used for the smaller 8 mm in diameter. 

The third letter of the IADC Classification Code For Diamond Bit describes the cutter type. 

  • For diamond bits: the third digit represents the diamond type.
    • 1 indicating natural diamonds.
    • 2 to TSP material.
    • 3 represents mixed natural diamonds and TSP.
    • 4 applies only to the highest density bit, indicating an impregnated diamond bit.

The Fourth Character Of IADC PDC Bit Classification

The Fourth Character Of IADC PDC Drill Bit Codes gives the basic description of bit’s profile. Bit profile affects both the cleaning and stability of the PDC bit. The two most widely used profiles are: Double cone & Shallow cone (refer to PDC Bit Design Article for more information)

This fourth letter of the IADC code ranges from 1 to 4, which:

  • 1 represents fishtail PDC bits, ‘ flat’ TSP, and natural diamond bits.
  • 2 & 3 & 4 indicate increasingly longer bit profiles
IADC CLASSIFICATION SYSTEM TABLE (PDC) drill bits specifications
Revised Classification System Table For PDC Drill Bits Specifications
iadc code for pdc bits
Classification Of Diamond Bits

Useful Papers

 PDC Drill Bit Specifications According to Steerability

Paper Abstract:

With the emergence of rotary steerable drilling systems (RSSs), the technical issue concerning bit design for a specific directional application has reappeared. Today, a bit must be specifically designed for a directional system: rotary bottom hole assembly (BHA), steerable downhole mud motor, or RSS. The reason is that the bit must respond properly and rapidly to a side force applied by the steering system to initiate a deviation.

To do so, the bit must have a predetermined steerability compatible with the directional drilling system to provide the optimum dogleg potential. The new generation of directional-drilling systems differentiates “pointing the bit” from “pushing the bit.” Consequently, the bit’s directional response is a key factor that operators and directional drillers need to know to make a good adaptation between the bit and the BHA. However, at the moment, there is no standard method for classifying bits by steerability and walking tendency. Based on a comprehensive analysis of the directional behavior of polycrystalline diamond compact (PDC) bits (numerical simulation and pilot and field tests), a simple methodology has been developed that defines and evaluates their steerability and walking tendency.

This methodology is used to classify the PDC drill bits defined with their IADC bit profile code specifications. Because PDC bit steerability is mainly a function of the bit profile, the gauge cutters, and the gauge pad, some design recommendations are given concerning these three parts. For each IADC bit profile code, the bit steerability and walking tendency are estimated through some formulas linking only the heights and lengths of the cutting profile. Some guidelines are also given about the gauge-pad length and gauge-cutter characteristics to achieve improved steerability. This simple method based on geometrical criteria allows quick estimation of the PDC bit steerability and the maximum dogleg potential achievable by the bit when coupled with the steering system.